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Weak admixtures: mobile impurities

Shift of the Mott-SF transition: Hamburg, LENS, MPQ

Strong interactions in free space: MIT, Innsbruck, Cambridge



Static disorder: Anderson localization

● What: quantum transition due to static disorder

– massive number of localized states

– no diffusion in an infinite medium

● When:                  (Ioffe-Regel criterion)

● Where: cold atoms! (no decoherence)

          But ..., how to produce disorder?
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Disorder related effects: 
 collective oscillations
 fragmentation
 suppression of diffusion

1D potentials d~5−20 m ,
 cigar-shaped condensates,
    up to 30*1 wells occupied

Problems towards strong localization:
 classical trapping
 large length scale for the disorder

Speckle potentials                 



  So ..., how to produce stronger and better disorder?
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Disorder related effects: 
 collective oscillations
 fragmentation
 suppression of diffusion

1D potentials d~5−20 m ,
 cigar-shaped condensates,
    up to 30*1 wells occupied

Problems towards strong localization:
 classical trapping
 large length scale for the disorder

Speckle potentials                 
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Static and disordered gas

d=/2~0.5 m
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Set of particles (B) trapped in a deep lattice,
              filling factor << 1   ---->   random potential

              each particle in the ground state of the local well

1D: Gavish & Castin, PRL 2005
3D: Massignan & Castin, PRA 2006
2D: Antezza, Castin & Hutchinson, PRA 2010
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Static and disordered gas

Set of particles (B) trapped in a deep lattice,
              filling factor << 1   ---->   random potential

              each particle in the ground state of the local well

Matter wave A interacts with B particles but does NOT feel the lattice

d=/2~0.5 m
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Set of particles (B) trapped in a deep lattice,
              filling factor << 1   ---->   random potential

              each particle in the ground state of the local well

Matter wave A interacts with B particles but does NOT feel the lattice



Advantages of this scheme

Very small correlation length for the disorder (ξ∼d)

No classical localization in potential minima

Unitarity limited A-B interaction

Exact numerical analysis



Conditions for deep trapping

Elastic scattering if : 
ℏ2k2

2mA

≪ℏ
d

BA

Γ
B
: spontaneous

     emission rate
(blue detuning)
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Deep lattice --> static and independent scatterers

Many trapped impurities
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(Massignan & Castin, PRA 2006)

V rA=gef ∑
j=1

N

 rA−r j∂∣rA−r j∣∣rA−r j∣ g eff =
2 ℏ2 aeff

mA



r=0

B
A

k

s-wave sol. of H0 : 0=
sin krA 

krA

⋅0 rB

A free, B trapped

2 body problem
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H=H0

(Massignan & Castin, PRA 2006)



V  rA ,rB=g⋅ r  ∂
∂ r

r rA ,rB=g⋅rreg R 

r=0

B
A

k

s-wave sol. of H0 : 0=
sin krA 

krA

⋅0 rB

H=H0V
A free, B trapped

At fixed R ,   rA ,rB  =
r0

 reg R 1−a
r o1

s-wave  reg  R =reg R 

Contact pot.

2 body problem
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r0:   reg R =0 R ,R g∫d OR ,reg 

 reg= I

I−g O
0

G= 1
Ei0+−H0
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  rA ,rB =0 rA ,rB g∫dG rA ,rB ; ,  reg 



  rA ,rB =0 rA ,rB g∫dG rA ,rB ; ,  reg 

 reg= I

I−g O
0

G= 1
Ei0+−H0

  rA ,rB  ≃
rA ∞ [ sin k rA

krA

f k
ei k rA

rA
]0 rB

aef=−lim
k 0

f k=a
mA

 ∫d0reg 
gef=

2 ℏ2aef

mA
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G=∑ | kA , nkA , n|

E−EkA , n

(single open channel: n=0 )

r0:   reg R =0 R ,R g∫d OR ,reg 
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confinement
induced

resonances!

(Massignan & Castin, PRA 2006)

Trapped 40K and free 6Li

aeff

by tuning either scattering length or a
ho



CIRs!

Trapped  6Li and free 40K
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Position of the CIRs

H =−
ℏ2  R

2 m AmB
 1

2
mB 2 R2−

ℏ2  r

2
g  r  ∂

∂ r
r⋅[ 1

2

mA 
mAmB

2 r2− 2 R⋅r ]

a0 :   
3
2

ℏ =2n 3
2 ℏ  mB

mAmB

− ℏ2

2 a res
2

a<0 :   H eff=−
ℏ2

2 mA

Δ r⃗ A
−

2π ℏ |a |
mB

exp(−r A
2 /aho

2 )

(√π aho)
3

Born-Oppenheimer,mB /mA≪1
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1D Confinement Induced Resonance
Moritz et al., PRL 2005



Experiment @ LENS
Lamporesi et al., PRL 2010



Experiment @ LENS
Lamporesi et al., PRL 2010
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Ei0  −H GE=1

r ;r0=Im 〈r∣GE∣r0 〉  is an eigenstate of H for any r0,E

since Ei0 −H  〈r∣G E∣r 0 〉=r−r 0

Eigenstates of the model



Eigenstates of the model

     is given in terms of (the inverse of) a complex NxN matrix
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Ei0  −H GE=1

r ;r0=Im 〈r∣GE∣r0 〉  is an eigenstate of H for any r0,E

since Ei0 −H  〈r∣G E∣r 0 〉=r−r 0

V rA=gef ∑
j=1

N

 rA−r j∂∣rA−r j∣∣rA−r j∣
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IN

OUT

localized state:

IN

OUT

generally:



Two states

0 : non-interacting, aeff =0
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IN

OUT

localized state: k=0.3695215... :

k=0.3 :

IN

IN

OUT

OUT
IN

OUT

generally:



Many localized states!

9000 sites available, p=0.1, a
eff

=mean particle distance
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k=0.3695215...

IN

OUT

localized state:

IN

OUT

generally:

for k d̃ <1  and aeff ∼d̃
d̃=d p−1/3



   Kondo physics

● Spin ½ massive impurities

● Spin ½ gas

● Spin-exchange interactions lead to screening of the 
spin's impurity by the surrounding cloud

● Alkali-earth atoms ideal for studying single and 
many Kondo impurities problem
   (e.g., regular / disordered Kondo lattice,
    long range RKKY interactions, ...)



Conclusions and perspectives

● CIRs → unitarity limited interactions by tuning aho

● Many long-lived localized states at low energy 

● Dynamics, dimensionality, interactions in the matter 
wave...

● Kondo physics!
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Conclusions and perspectives

Many long-lived localized states for 

● Dynamics?
● Thermal bath?
● Dimensionality?
● Interactions in the matter wave?
● New experiment!

Localization induced by impurities (S. Ospelkaus et al., PRL 2006)
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k d1 and aeff ~ d

d= d

p1/3



BA

IN
OUT

 P. Massignan and Y. Castin, Phys. Rev. A (2006)



A localized state?
Eigenstate with:
   energy higher than the maximum of the potential
   square integrable wave function
   

E=2Vmax

Why?   quantum interference!

[von Neumann and Wigner, Phys. Z. 30, 465 (1929)]
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Poles of the Green's function

 z−H G=1

35



Ioffe-Regel criterion
 1

n

With a unitarity-limited cross-section, =
4
k 2

one obtains kd 4 p1/3

For p=0.1, this yields k 1
d

=
k L



T ~100nK 



N static δ-scatterers

M jl
∞=ei k∣r j−r l∣

∣r j−r l∣

Ei0 −H G=1

M= I
aef

M∞

r =Im r ;r0 is an eigenstate of H for any r0

Ei0 −H  r ;r 0=r−r 0, then :

 r ;r 0=〈r∣G∣r0 〉=g 0r−r 0
2 ℏ2

mA
∑
j , l

g 0r−r j[ M −1] jl g 0r l−r 0



Eigenvalues of M         M= 1
aef

M∞

d=

2

a
eff

=0
a

eff
=d
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