EFIMOVTRIMERS UNDER STRONG CONFINEMENT

Pietro Massignan
(Institute of Photonic Sciences, Barcelona)

ICFO ${ }^{\text {² }}$

The Institute of Photonic
Sciences
in collaboration with
Jesper Levinsen (Aarhus Institute of Advanced Studies) Meera Parish (University College London)

STRONG CONFINEMENT EFFECTS

The dimensionality of the embedding space profoundly affects the system properties.

Examples:

- Anderson localization
- condensation \& superfluidity

OUTLINE

- Three identical bosons: 3D vs. 2D
- What happens in between? (quasi-2D)
- trimer spectra and aspect-ratios
- hyper-spherical potentials and wave functions
- Experimental consequences

$2 \& 3$ IDENTICAL BOSONS IN 3D

One universal dimer: $E_{b}=-\frac{\hbar^{2}}{m a^{2}} \quad(a>0)$

For resonant interactions ($1 / \mathrm{a}=0$), in principle \exists an infinite tower of Efimov trimers.

Trimers map onto each other via the scale transformations $a \rightarrow \lambda_{0}^{n} a$ and $E \rightarrow \lambda_{0}^{-2 n} E$

$$
\lambda_{0}=22.7
$$

Braaten \& Hammer, Phys. Rep. 2006

Largest set by the temperature, or the dimension of the container
Smallest set by short-distance physics
Scaling symmetry: continuous (two-body) vs. discrete (three-body)

$2 \& 3$ IDENTICAL BOSONS IN 2D

Apply harmonic confinement: $V(z)=\frac{1}{2} m \omega_{z}^{2} z^{2}$

- CoM decouples
- continuum is shifted

$$
l_{z}=\sqrt{\frac{\hbar}{m \omega_{z}}}
$$

- additional length scale appears

One universal dimer: $E_{b}=\frac{\hbar \omega}{2}-\frac{\hbar^{2}}{m a_{2 D}^{2}}$

Petrov \& Shlyapnikov PRA 2001
Bloch, Dalibard, Zwerger RMP 2008
Levinsen \& Parish, arXiv 2014 (review)
Two universal trimers:

$$
-1.27 \frac{\hbar^{2}}{m a_{2 \mathrm{D}}^{2}}
$$

Bruch \& Tjon, PRA 1979

$$
-16.5 \frac{\hbar^{2}}{m a_{2 \mathrm{D}}^{2}}
$$

Both two- and three-body problems display a continuous scaling symmetry

THREE BOSONS IN QUASI-2D

$$
H=\sum_{\mathbf{k}, n}\left(\epsilon_{\mathbf{k}}+n \hbar \omega_{z}\right) a_{\mathbf{k}, n}^{\dagger} a_{\mathbf{k}, n}+\sum_{\substack{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q} \\ n_{1}, n_{2}, n_{3}, n_{4}}} \mathrm{e}^{-\left(\mathbf{k}^{2}+\mathbf{k}^{\prime 2}\right) / \Lambda^{2}}\left\langle n_{1} n_{2}\right| \hat{g}\left|n_{3} n_{4}\right\rangle a_{\mathbf{q} / 2+\mathbf{k}, n_{1}}^{\dagger} a_{\mathbf{q} / 2-\mathbf{k}, n_{2}}^{\dagger} a_{\mathbf{q} / 2-\mathbf{k}^{\prime}, n_{3}} a_{\mathbf{q} / 2+\mathbf{k}^{\prime}, n_{4}}
$$

the UV cut-off \wedge controls the three-body physics at short-distances, and fixes the crossing of the deepest Efimov trimer with the 3-atom continuum (a.)

Trimer wave function: $\sum_{\substack{\mathbf{k}_{1}, \mathbf{k}_{2} \\ n_{1}, n_{2}, n_{3}}} \psi_{\mathbf{k}_{1}, \mathbf{k}_{2}}^{n_{1}, n_{2}, n_{3}} a_{\mathbf{k}_{1}, n_{1}}^{\dagger} a_{\mathbf{k}_{2}, n_{2}}^{\dagger} a_{-\mathbf{k}_{1}-\mathbf{k}_{2}, n_{3}}^{\dagger}$

J. Levinsen, P. Massignan, and M. Parish, Phys. Rev X (2014)

SKORNIAKOV—TER-MARTIROSIAN EQ.

relative z-motion
Clebsch-Gordan coefficient

$$
\mathcal{T}^{-1}\left(\mathbf{k}_{1}, E_{3}-\epsilon_{\mathbf{k}_{1}}-N_{1} \omega_{z}\right) \chi_{\mathbf{k}_{1}}^{N_{1}}=2 \sum_{\mathbf{k}_{2}, N_{2} n_{23} n_{31}} \frac{f_{n_{23}} f_{n_{31}}\left\langle N_{1} n_{23} \mid N_{2} n_{31}\right\rangle e^{-\left(k_{1}^{2}+k_{2}^{2}\right) / \Lambda^{2}} \chi_{\mathbf{k}_{2}}^{N_{2}}}{E_{3}-\epsilon_{\mathbf{k}_{2}}-\epsilon_{\mathbf{k}_{1}+\mathbf{k}_{2}}-\left(N_{1}+n_{23}\right) \omega_{z}}
$$

(the CoM q.number N does not appear in the final formula!)

- E_{3} is the energy measured from the 3 -atom continuum
- \mathbf{k}_{i} is the relative momentum of atom i w.r.t. the pair (j, k)
- $n_{i j}$ and N_{i} are the h.o. quantum numbers for motion along z of a pair, and of an atom and a pair

Wave function for the
atom-pair relative motion: $\psi(\boldsymbol{\rho}, Z)=R^{3 / 2} \sum_{\mathbf{k}, N} e^{i \mathbf{k} \cdot \boldsymbol{\rho}} \phi_{N}(Z) \chi_{\mathbf{k}}^{N}$

SPECTRUM

interaction strength: $\left|a_{-}\right| / a$ confinement strength: $\mathcal{C}_{z} \equiv\left|a_{-}\right| / l_{z}$

${ }^{133} \mathrm{Cs}: \quad \omega_{z} \approx 2 \pi \times 5 \mathrm{kHz}$
strong confinement

$\omega_{z} \approx 2 \pi \times 30 \mathrm{kHz}$

- deepest trimer closely resembles the 3D-one, even for strong confinement
- spectrum of trimers is strongly modified above the 3D continuum
- energy of trimer (measured from the q2D dimer) can be a significant fraction of ω_{z} even when $\mid \mathrm{a}-/ \mathrm{a}<-\mathrm{I}$, so trimers can be quite resistant to thermal dissociation when $\mathrm{T} \ll \omega_{z}$

SPECTRUM (2D STYLE)

$$
\mathcal{C}_{z} \equiv\left|a_{-}\right| / l_{z}
$$

${ }^{133} \mathrm{Cs}: \omega_{z} \approx 2 \pi \times 5 \mathrm{kHz}$

$\omega_{z} \approx 2 \pi \times 30 \mathrm{kHz}$

- the 2D limit is recovered for small and negative scattering lengths ("BCS side" of the resonance)
- the two deepest trimers are stabilized for every negative scattering length
- avoided crossings: superposition of trimers with Efimovian + 2D-like character

SHAPE OFTHETRIMERS

2D limit

HYPERSPHERICAL POTENTIALS

$$
R^{2}=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}
$$

Hyper-spherical expansion: $\quad \Psi(R, \Omega)=\frac{1}{R^{5 / 2} \sin \left(2 \alpha_{k}\right)} \sum_{n=0}^{\infty} f_{n}(R) \Phi_{n}(R, \Omega)$

Hyper-radial Schrödinger equation:

$$
\left[-\frac{1}{2 m} \frac{\partial^{2}}{\partial R^{2}}+V(R)\right] f_{0}(R)=\left(E_{3}+\omega_{z}\right) f_{0}(R)
$$

$V(R)$ depends on l_{z} / a, but not on the 3-body parameter.

HYPERSPHERICAL POTENTIALS

- $V(R)$ approaches the 3D potential for $R \ll|a|$ and the 2D potential for $R \gg l_{z}$
- When $l_{z} / a \lesssim-2.5$ the potential displays a repulsive barrier with height $\sim 0.15 / m a^{2}$
- Small weight of trimers in the short distance region enhances lifetime

HYPERSPHERICAL POTENTIALS

- $V(R)$ approaches the 3D potential for $R \ll|a|$ and the 2D potential for $R \gg l_{z}$
- When $l_{z} / a \lesssim-2.5$ the potential displays a repulsive barrier with height $\sim 0.15 / m a^{2}$
- Small weight of trimers in the short distance region enhances lifetime

HYPERSPHERICAL POTENTIALS

- $V(R)$ approaches the 3D potential for $R \ll|a|$ and the 2D potential for $R \gg l_{z}$
- When $l_{z} / a \lesssim-2.5$ the potential displays a repulsive barrier with height $\sim 0.15 / m a^{2}$
- Small weight of trimers in the short distance region enhances lifetime

EXPERIMENTAL CONSEQUENCES

- As "2D" experiments are performed at confinements often weaker than 5 kHz , we expect this crossover physics to impact three-body correlations in realistic 2D studies on the attractive side of the Feshbach resonance
- Confinement raises continuum by $\hbar \omega_{z}$, so trimer resonance and loss peak disappear for $l_{z} /\left|a_{-}\right| \lesssim 2.5$, i.e., $C_{z} \gtrsim 0.4$
- When aiming at observing the discrete scaling symmetry: the 2 nd trimer signature disappears once $C_{z} \gtrsim 0.4 / 22.7$ which for ${ }^{133} \mathrm{Cs}$ corresponds to $\omega_{z} \approx 2 \pi \times 10 \mathrm{~Hz}$

- Similar effects expected for 4-body states (as two tetramers exist in 2D), or in quasi-ID

CONCLUSIONS

Efimov trimers under strong confinement
Discrete scaling survives only for $\left|a_{-}\right| \ll|a| \ll l_{z}$
Deepest trimer remains 3D-like even under strong confinement
Mixing with 2D trimers stabilizes two deepest trimers for $\forall \mathrm{a}<0$

Small weight at short distance will enhance lifetime (long-lived Efimov trimers?)
Consequences for correlations, quest to observe discrete scaling symmetry

Thanks to:
Vudtiwat Ngampruetikorn (University of Cambridge)
Rudi Grimm, Francesca Ferlaino, Bo Huang \& all the LevT team (Innsbruck)
J. Levinsen,
P. Massignan and M. M. Parish,

Phys. Rev. X 4, 031020 (2014)

And thank you all for the attention!

