TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES

Pietro Massignan

Quantum Information Group (GIQ-UAB) and Quantum Optics Theory (QOT-ICFO) Barcelona

in collaboration with: Anna Sanpera (GIQ), Anna Kubasiak and Maciej Lewenstein (ICFO)

Institut de Ciències Fotòniques

FERMIX - EUROQUAM

Topological properties ✓: stretching, bending ✓: cutting, joining

Topological properties <

Concern the whole system (non-local) Characterized by integer numbers Robust

- Landau: most states of matter may be classified by the symmetries they break,
 - translational (solids)
 - rotational (magnets)
 - gauge (superfluids)
- BUT: some materials possess distinguishable phases with no broken symmetries (QH and QSH effect)

Topological phase transitions!

A topological insulator: Hg-Te quantum well

Phase transition at d=d_{crit}: normal-to-topological insulator

Te:Telluride

A topological insulator: Hg-Te quantum well

interesting..., but where?

Topological states predicted in:

- cond.mat. topological insulators (quantum wells, bismuth antimony alloys, Bi₂Se₃ crystals, ...)
- v=5/2 FQH state (Pfaffian)
- 2D p-wave SF of identical 1 fermions Read&Green, PRB 2000

 2D s-wave SF of imbalanced 1↓ fermions with spin-orbit coupling

Sato, Takahashi & Fujimoto, PRL 2009

Outlook of my talk

1 2D p-wave SF

↑↓ 2D s-wave SF with $n_{\uparrow} \neq n_{\downarrow}$ and spin-orbit coupling

Why 2D?

Because in 2D particles have anyonic statistics (anyons: any phase under exchange of two particles)

In particular, the statistic can be non-Abelian, i.e., the exchange of two particles is described by a matrix

Anyons are necessary to obtain topological states

1 2D p-wave SF

A stable p-wave SF? 3-body losses at a p-wave Feshbach resonance

A stable p-wave SF? 3-body losses at a p-wave Feshbach resonance

Ultracold proposals:

- "dissipation-induced stability" in optical lattices ^(1,2) (i.e., how to get no losses from large losses)
- time-dependent lattices ^(3,4)
- RF dressing of 2D fermionic polar molecules leads to long-range interactions ($\propto r^{-3}$) and high T_C⁽⁵⁾
- super-exchange interactions in Bose-Fermi mixtures ^(6,7)

I:Han, Chan, Yi, Daley, Diehl, Zoller & Duan, PRL 2009
2:Roncaglia, Rizzi & Cirac, PRL 2009
2:Lim, Lazarides, Hemmerich & Morais-Smith, EPL 2009
3:Pekker, Sensarma & Demler, arXiv:0906.0931
4:Dutta & Lewenstein, arXiv:0906.2115 & PRA 2010
5:Cooper & Shlyapnikov, PRL 2009
6:Lewenstein, Santos, Baranov & Fehrmann, PRL 2004
7:Massignan, Sanpera & Lewenstein, PRA 2010

1) $U_{BB}>0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

11

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

composite fermions

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

composite fermions

1) $U_{BB}>0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

Attractive interaction when $U_{BF}>U_{BB}$

Effective Fermi-Hubbard model

 $H = -t \sum_{\langle i,j \rangle} c_i^{\dagger} c_j - \frac{U}{2} \sum_{\langle i,j \rangle} n_i n_j - \mu \sum_i n_i$ $t \sim (t_B t_F) / U_{BF}$ U>0

Friday, October 1, 2010

Effective Fermi-Hubbard model

 $H = -t \sum_{\langle i,j \rangle} c_i^{\dagger} c_j - \frac{U}{2} \sum_{\langle i,j \rangle} n_i n_j - \mu \sum_i n_i n_i$ $t_{(t_{\rm B} t_{\rm F})/U_{\rm BF}}$

• BCS approach: introduce BdG operators $\gamma_n = \sum_i u_n(i)c_i + v_n(i)c_i^{\dagger}$

• Self-consistent "p-wave gap equation" $\Delta_{ij} = U \langle c_i c_j \rangle = U \sum_{E_n > 0} u_n^*(i) v_n(j) \tanh\left(\frac{E_n}{2k_B T}\right)$

Spectrum on a lattice (homogeneous system)

2D chiral (p_x±ip_y) SF: $E(\mathbf{k}) = \sqrt{\xi(\mathbf{k})^2 + \Delta_{\mathbf{h}}(\mathbf{k})^2}$

Linear dispersion at the Dirac cones

 $\mu=-4t$ $\mu=0$ $\mu=4t$ Two distinguishable topological phases for filling F<1/2 and F>1/2

Friday, October 1, 2010

Spectrum with vortex

 $\Delta_0 \sim t \sim 10 nK \text{ (super-exch.)}$ Low-lying spectrum: $E_n \approx n \omega_0$ $_{n=0,1,2,...}$

The eigenstate with $E_0 \ll \Delta_0$ is a Majorana fermion.

Particle-hole symmetry of the BdG eqs.: $\{E_n, \psi_n\} \leftrightarrow \{-E_n, \sigma_1 \psi_n^*\}$. Then, if $E_0 = 0, \ u_0 = v_0^*$

more details to be found in: P. Massignan, A. Sanpera & M. Lewenstein, PRA 2010

↑↓ 2D s-wave SF with $n_{\uparrow} \neq n_{\downarrow}$ and spin-orbit coupling

Ultracold atoms in synthetic gauge fields

Proposals: Jaksch&Zoller, NJP 2003 Osterloh et al., PRL 2005 Gerbier&Dalibard, NJP 2010 Bermudez et al., arXiv1004.5101

 adiabatic Raman passage
 adiabatic control of superpositions of degenerate dark states
 spatially varying Raman coupling
 Raman-induced transitions to auxiliary states in optical lattices

REVIEW:

Artificial gauge potentials for neutral atoms J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg submitted to RMP, arXiv:1008.5378

↑↓ fermions in synthetic gauge fields

$$\begin{aligned} \mathcal{H}_{0} &= -\mathrm{t} \sum_{\mathrm{i}} \left[\mathbf{c}_{\mathrm{i}+\hat{x}}^{\dagger} e^{i\sigma_{y}\alpha} \mathbf{c}_{\mathrm{i}} + \mathbf{c}_{\mathrm{i}+\hat{y}}^{\dagger} e^{i\sigma_{x}\beta} \mathbf{c}_{\mathrm{i}} + \mathrm{h.c.} \right] \\ \mathbf{c}_{\mathrm{i}}^{\dagger} &= (c_{\mathrm{i}\uparrow}^{\dagger}, c_{\mathrm{i}\downarrow}^{\dagger}) \end{aligned}$$

External non-Abelian gauge fields yield a fictitious spin-orbit coupling

Add attractive interactions

superfluid

standard BCS treatment

strong imbalance yields a topological state

Spectrum on a cylinder

(open b.c. along x)

19

Topological phases

h=μ↑-μ↓

Chern numbers

easy to calculate with method from J. Bellissard, condmat/9504030

 $\Delta = t$ $\alpha = \pi/4$ $\mu = -0.5t[|\cos(\alpha)| + |\cos(\beta)|]$

A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827

Spin imbalance vs. pair breaking

without SO coupling: analytic CC limit ($h_{CC} = \Delta_0 / \sqrt{2}$)

with SO coupling: self-consistent calculation of Δ from the BCS gap equation

$$\alpha = \beta = \pi/4$$
 $\mu = -3t$

A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827

Conclusions

- Ultracold SF fermions possess
 <u>non-trivial topological phases</u>
- Optical lattices stabilized p-wave SF > FQH

P. Massignan, A. Sanpera & M. Lewenstein, PRA 2010

• $\uparrow \downarrow$ fermions in non-Abelian gauge fields >> QSH

A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827

- Applications to:
 - ➡ relativistic QED
 - → lattice gauge theories
 - topological quantum computation

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

 $U_{BF} \sim 0$

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

Friday, October 1, 2010

 $U_{BF} \sim 0$

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

composite fermions

U_{BF}~0

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

composite fermions

U_{BF}~0

ĪĪ,

 $\overline{\Pi}_{\mathbf{p}}$

U_BF/U_BB 0

I:free fermions (F)

composite fermions

Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

 $\mu_{\rm B}/U_{\rm BB}$

1) $U_{BB} > 0$ 2) Strong coupling: $t_B, t_F \ll U_{BB}, |U_{BF}|$ (bosons in n=1 Mott state)

Spectrum on a lattice (homogeneous system)

2D chiral (p_x±ip_y) SF: $E(\mathbf{k}) = \sqrt{\xi(\mathbf{k})^2 + \Delta_h(\mathbf{k})^2}$ with $\xi = -2t[\cos(k_x a) + \cos(k_y a)] - \mu$ and $\Delta_h^2 = \Delta_0[\sin^2(k_x a) + \sin^2(k_y a)]$

Linear dispersion at the Dirac cones

 $\mu=4t$ $\mu=0$ $\mu=4t$ Two distinguishable topological phases for -4t< $\mu<0$ and 0< $\mu<4t$

Spectrum with vortex

Bulk gap Δ_0 and lowest energy eigenvalues at U=5t

Ansatz : $\Delta_{ij} = \chi_{ij} f_i e^{iw\theta_i}$

 $\chi_{ij} = \{1, i, -1, -i\}$: chirality $w = \pm 1$: vortex direction of rotation f_i : vortex amplitude at site i θ_i : polar angle of site i

 $\Delta_0 \sim t \sim 10$ nK (super-exch.) Low-lying spectrum: $E_n \approx n \omega_0$

The eigenstate with $E_0 \ll \Delta_0$ is a Majorana fermion.

Particle-hole symmetry of the BdG eqs.: $\{E_n, \psi_n\} \leftrightarrow \{-E_n, \sigma_1\psi_n^*\}$. Then, if $E_0 = 0, \ u_0 = v_0^*$

Spectrum with vortex

Bulk gap Δ_0 and lowest energy eigenvalues at U=5t

Ansatz : $\Delta_{ij} = \chi_{ij} f_i e^{iw\theta_i}$

 $\chi_{ij} = \{1, i, -1, -i\}$: chirality $w = \pm 1$: vortex direction of rotation f_i : vortex amplitude at site i θ_i : polar angle of site i

 $\Delta_0 \sim t \sim 10$ nK (super-exch.) Low-lying spectrum: $E_n \approx n \omega_0$

The eigenstate with $E_0 \ll \Delta_0$ is a Majorana fermion.

Particle-hole symmetry of the BdG eqs.: $\{E_n, \psi_n\} \leftrightarrow \{-E_n, \sigma_1 \psi_n^*\}$. Then, if $E_0 = 0, \ u_0 = v_0^*$

E=0 wavefunction

w=-1U=5t

Oscillating wavefunction with exponentially decaying envelope u_0 has a maximum (node) in the core for w=-1 (w=1)

Half filling

 $\lambda_{latt} = \lambda_{wf}/2$ Zero-mode only on odd N*N lattices d-wave checkerboard symmetry w=I state suddenly spreads close to the TPT

(Topological Phase Transition)

P. Massignan, A. Sanpera & M. Lewenstein, PRA 2010

Edge states

Degenerate pair of counter-propagating edge states with opposite spins