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Topological properties
✔: stretching, bending
✘: cutting, joining

✔ ✘
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Topological properties
✔: stretching, bending

Concern the whole system (non-local)
Characterized by integer numbers

Robust

✘: cutting, joining

✔ ✘
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• Landau: most states of matter may be 
classified by the symmetries they break,

‣ translational (solids)

‣ rotational (magnets)

‣ gauge (superfluids)

• BUT: some materials possess distinguishable 
phases with no broken symmetries
                               (QH and QSH effect)

                 Topological phase transitions!
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A topological insulator:
 Hg-Te quantum well

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.

Qi & Zhang, Physics Today 2010
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Phase transition at d=dcrit:
normal-to-topological insulator

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.
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A topological insulator:
 Hg-Te quantum well

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.

Qi & Zhang, Physics Today 2010
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interesting..., but where?

Topological states predicted in:

• cond.mat. topological insulators
         (quantum wells, bismuth antimony alloys, Bi2Se3 crystals, ...)

• ν=5/2 FQH state (Pfaffian)

• 2D p-wave SF of identical ↑ fermions
                                                                        Read&Green, PRB 2000

• 2D s-wave SF of imbalanced ↑↓ fermions 
with spin-orbit coupling
                                                      Sato, Takahashi & Fujimoto, PRL 2009 
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↑↓ 2D s-wave SF
with n↑≠n↓

and spin-orbit coupling

Outlook of my talk

↑ 2D p-wave SF
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Why 2D?

Because in 2D particles have anyonic statistics
( anyons: any phase under exchange of two particles )

In particular, the statistic can be non-Abelian,
 i.e., the exchange of two particles 

is described by a matrix

Anyons are necessary to obtain topological states
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↑ 2D p-wave SF
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A stable p-wave SF?
3-body losses at a p-wave Feshbach resonance
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A stable p-wave SF?

Ultracold proposals:

• “dissipation-induced stability” in optical lattices (1,2)

(i.e., how to get no losses from large losses)

• time-dependent lattices (3,4)

• RF dressing of 2D fermionic polar molecules leads to
 long-range interactions (∝r-3) and high TC (5)

• super-exchange interactions in Bose-Fermi mixtures (6,7)

3-body losses at a p-wave Feshbach resonance

1:Han, Chan, Yi, Daley, Diehl, Zoller & Duan, PRL 2009
2:Roncaglia, Rizzi & Cirac, PRL 2009
2:Lim, Lazarides, Hemmerich & Morais-Smith, EPL 2009
3:Pekker, Sensarma & Demler, arXiv:0906.0931
4:Dutta & Lewenstein, arXiv:0906.2115 & PRA 2010
5:Cooper & Shlyapnikov, PRL 2009
6:Lewenstein, Santos, Baranov & Fehrmann, PRL 2004
7:Massignan, Sanpera & Lewenstein, PRA 2010
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state) Lewenstein, Santos, Baranov & Fehrmann, PRL 2004
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state) Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

UBF>0
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state) Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

composite 
fermions

UBF>0
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state) Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

composite 
fermions

UBF>0

11

Attractive interaction when UBF>UBB
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Effective Fermi-Hubbard model

H = −t

�

<i,j>

c
†
i cj −

U

2

�

<i,j>

ninj − µ

�

i

ni

U>0

nearest-neighbors interaction
(super-exchange)

t∼(tBtF)/UBF
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Effective Fermi-Hubbard model

H = −t
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<i,j>

c
†
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2
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i

ni

U>0

γn =
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i

un(i)ci + vn(i)c
†
i

∆ij = U�cicj� = U
�

En>0

u∗
n(i)vn(j) tanh

�
En

2kBT

�

• BCS approach: introduce BdG operators

•  Self-consistent “p-wave gap equation”

nearest-neighbors interaction
(super-exchange)

t∼(tBtF)/UBF
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Spectrum on a lattice
(homogeneous system)

2D chiral (px±ipy) SF: E(k) =
�

ξ(k)2 +∆h(k)2

Linear dispersion at the Dirac cones

μ=-4t μ=0 μ=4t

Two distinguishable topological phases for filling F<1/2 and F>1/2
13
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Spectrum with vortex
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 pairing µ=-4t   Weak

 pairing

Δ0∼t∼10nK (super-exch.)
Low-lying spectrum: En≈nω0

The eigenstate with E0≪Δ0

is a Majorana fermion.

n=0,1,2,...

Particle-hole symmetry of the BdG eqs.:                                    .  Then, if {En,ψn} ↔ {−En,σ1ψ
∗
n} E0 = 0, u0 = v∗0

more details to be found in:
P. Massignan, A. Sanpera & M. Lewenstein, PRA 2010
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↑↓ 2D s-wave SF
with n↑≠n↓

and spin-orbit coupling
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Ultracold atoms in
synthetic gauge fields

Proposals: Jaksch&Zoller, NJP 2003
               Osterloh et al., PRL 2005

                   Gerbier&Dalibard, NJP 2010
                   Bermudez et al., arXiv1004.5101

 adiabatic Raman passage
 adiabatic control of superpositions

    of degenerate dark states
 spatially varying Raman coupling
 Raman-induced transitions

    to auxiliary states in optical lattices 

Artificial gauge potentials for neutral atoms
J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg

submitted to RMP, arXiv:1008.5378
REVIEW:
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H0 = −t
�

i

�
c†i+x̂e

iσyαci + c†i+ŷe
iσxβci + h.c.

�

c†i = (c†i↑, c
†
i↓)

External non-Abelian gauge fields yield a fictitious spin-orbit coupling

↑↓ fermions in
 synthetic gauge fields
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Add attractive interactions

standard BCS treatment

superfluid

↓

↓

strong imbalance yields a topological state

↓
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Spectrum on a cylinder
(open b.c. along x)
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Topological phases

Δ=t
α=π/4
μ=-0.5t[|cos(α)|+|cos(β)|]

/t

Chern numbers
easy to calculate with method from
J. Bellissard, condmat/9504030

A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827 

h=μ↑-μ↓

β

h/t

20
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Spin imbalance vs. pair breaking

h0 Π, hΠ0

h00
hCC
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V�t

h�t

without SO coupling:
analytic CC limit
( hCC = Δ0/√2 )

with SO coupling:
self-consistent calculation of Δ 

from the BCS gap equation

Ch=-1
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0

Ch=1

α=β=π/4      μ=-3t

A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827 
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Conclusions
• Ultracold SF fermions possess

                             non-trivial topological phases

• Optical lattices stabilized p-wave SF  ➢  FQH
                          P. Massignan,  A. Sanpera & M. Lewenstein, PRA 2010

• ↑↓ fermions in non-Abelian gauge fields ➢ QSH
                     A. Kubasiak, P. Massignan & M. Lewenstein, arXiv:1007.4827

• Applications to:
➡ relativistic QED 
➡ lattice gauge theories
➡ topological quantum computation
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)

UBF∼0

Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

composite 
fermions

UBF<0UBF>0
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Spectrum on a lattice
(homogeneous system)

2D chiral (px±ipy) SF: E(k) =
�

ξ(k)2 +∆h(k)2

with ξ = −2t[cos(kxa) + cos(kya)]− µ and ∆2
h = ∆0[sin

2(kxa) + sin2(kya)]

Linear dispersion at the Dirac cones

μ=-4t μ=0 μ=4t

Two distinguishable topological phases for -4t<μ<0 and 0<μ<4t
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Spectrum with vortex

Δ0∼t∼10nK (super-exch.)
Low-lying spectrum: En≈nω0

The eigenstate with E0≪Δ0

is a Majorana fermion.

χij = {1, i,−1,−i} : chirality
w = ±1 : vortex direction of rotation
fi : vortex amplitude at site i
θi : polar angle of site i

Ansatz : ∆ij = χijfie
iwθi

 0  0.1  0.2  0.3  0.4  0.5
 0

 0.5

 1

 1.5

Fermionic filling F

Bulk gap 0 and lowest energy eigenvalues at U=5t

E0
E1
 E2
E3
E4

0

n=0,1,2,...

Particle-hole symmetry of the BdG eqs.:                                    .  Then, if {En,ψn} ↔ {−En,σ1ψ
∗
n} E0 = 0, u0 = v∗0
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E=0 wavefunction

w=-1
U=5t

Oscillating wavefunction with exponentially decaying envelope
u0 has a maximum (node) in the core for w=-1 (w=1)

|u0|
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Half filling

Chirality
px+ipy

w=-1 w=1

λlatt=λwf/2
Zero-mode only on odd N*N lattices
d-wave checkerboard symmetry
w=1 state suddenly spreads close to the TPT

(Topological Phase Transition)

P. Massignan, A. Sanpera & M. Lewenstein, PRA 2010
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Edge states

In the quantum world, atoms and their electrons can
form many different states of matter, such as crystalline solids,
magnets, and superconductors. Those different states can 
be classified by the symmetries they spontaneously break—
translational, rotational, and gauge symmetries, respectively,
for the examples above. Before 1980 all states of matter in 
condensed-matter systems could be classified by the principle 
of broken symmetry. The quantum Hall (QH) state, discovered
in 1980,1 provided the first example of a quantum state that has
no spontaneously broken symmetry. Its behavior depends only
on its topology and not on its specific geometry; it was topo-
logically distinct from all previously known states of matter.

Recently, a new class of topological states has emerged,
called quantum spin Hall (QSH) states or topological insula-
tors (see PHYSICS TODAY, January 2008, page 19). Topologically
distinct from all other known states of matter, including QH
states, QSH states have been theoretically predicted and ex-
perimentally observed in mercury telluride quantum wells,2,3

in bismuth antimony alloys,4,5 and in Bi2Se3 and Bi2Te3 bulk

crystals.6–8 QSH systems are insulating in the bulk—they have
an energy gap separating the valence and conduction bands—
but on the boundary they have gapless edge or surface states
that are topologically protected and immune to impurities or
geometric perturbations.9–12 Inside such a topological insula-
tor, Maxwell’s laws of electromagnetism are dramatically al-
tered by an additional topological term with a precisely quan-
tized coefficient,12 which gives rise to remarkable physical
effects. Whereas the QSH state shares many similarities with
the QH state, it differs in important ways. In particular, QH
states require an external magnetic field, which breaks time-
reversal (TR) symmetry; QSH states, in contrast, are TR invari-
ant and do not require an applied field.

From quantum Hall to quantum spin Hall 
In a one-dimensional world, there are two basic motions: for-
ward and backward. Random scattering can cause them to
mix, which leads to resistance. Just as we have learned from
basic traffic control, it would be much better if we could spa-

tially separate the counterflow directions
into two separate lanes, so that random
collisions could be easily avoided. That
simple traffic control mechanism turns
out to be the essence of the QH effect.1

The QH effect occurs when a strong
magnetic field is applied to a 2D gas of
electrons in a semiconductor. At low tem-
perature and high magnetic field, elec-
trons travel only along the edge of the
semiconductor, and the two counterflows
of electrons are spatially separated into
different “lanes” located at the sample’s
top and bottom edges. Compared with a
1D system with electrons propagating in
both directions, the top edge of a QH bar
contains only half the degrees of freedom.
That unique spatial separation is illus-
trated in  figure 1a by the symbolic equa-
tion “2 = 1 [forward mover] + 1 [backward
mover]” and is the key reason why the
QH effect is topologically robust. When
an edge-state electron encounters an im-
purity, it simply takes a detour and still
keeps going in the same direction 
(figure 1), as there is no way for it to turn

© 2009 American Institute of Physics, S-0031-9228-1001-020-3 January 2010 Physics Today 33

The quantum spin
Hall effect and 
topological insulators
Xiao-Liang Qi and Shou-Cheng Zhang

In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel
state of matter predicted to have exotic physical properties.

Xiao-Liang Qi is a research associate at the Stanford Institute for Materials and Energy Science and Shou-Cheng Zhang is a professor of
physics at Stanford University in Stanford, California. 

feature

Spinless 1D chain Spinful 1D chain

2 = 1 + 1 4 = 2 + 2

Quantum Hall Quantum spin Hall

Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”
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