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• Landau: most phases of matter may be 
classified by the symmetries they break

‣ translational (solids)

‣ rotational (magnets)

‣ gauge (superfluids)

• BUT: some materials possess distinguishable 
phases with no broken symmetries
                               (QH and QSH effect)

                 Topological phase transitions!
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Topological properties
✔: stretching, bending
✘: cutting, joining

✔ ✘
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Topological properties
✔: stretching, bending

Concern the whole system (non-local)
Characterized by integer numbers

Robust

✘: cutting, joining

✔ ✘
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A topological insulator
 Hg-Te quantum well

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials

www.physicstoday.org January 2010 Physics Today 35

NORMAL INVERTED

d < 6.5 nm d > 6.5 nm

CdTe                CdTe

HgTe CdTe       HgTe        CdTe

E1

H1

H1

E1

0.05 0.05

−0.05 −0.05

0 0

−0.02 −0.02−0.01 −0.010 00.01 0.010.02 0.02

EN
ER

G
Y

 (e
V

)

EN
ER

G
Y

 (e
V

)

WAVENUMBER (Å )−1 WAVENUMBER (Å )−1

107

106

105

104

103
−1.0 −1.0−0.5 −0.50.0 0.00.5 0.51.0 1.01.5 1.52.0 2.0

0

4

8

12

16

20

R
ES

IS
TA

N
C

E 
(

)
Ω

R
ES

IS
TA

N
C

E 
(k

)
Ω

a

b

c

GATE VOLTAGE (V) GATE VOLTAGE (V)

h
2e2

Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.

Qi & Zhang, Physics Today 2010
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Phase transition at d=dcrit:
normal-to-topological insulator

tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.
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A topological insulator
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tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.
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36). Explicit solution of that model
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provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.

Qi & Zhang, Physics Today 2010
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Hg-Te has strong
 spin-orbit coupling



• talks by Mudry, Taylor, Morais-Smith, Le Hur, Jackiw, Macrí, Egger, ...

• cond.mat. topological insulators
         (quantum wells, bismuth antimony alloys, Bi2Se3 crystals, ...)

• ν=5/2 FQH state (Pfaffian)

• 2D p-wave SF of identical ↑ fermions
                                                                        Read&Green, PRB 2000

• 2D s-wave SF of imbalanced ↑↓ fermions 
with spin-orbit coupling
                                                             Sato, Takahashi & Fujimoto, PRL 2009
                                                                                 Sau Jay, Lutchyn, Tewari and Das Sarma, PRL 2010

• ... ... ...

7

interesting..., but where?



↑↓ 2D s-wave ferm. SF
with n↑≠n↓

and spin-orbit coupling

Outlook of the talk

↑ 2D p-wave ferm. SF
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Why 2D?

In 2D particles need not to be either bosons/fermions,
but may have anyonic statistics

( anyons: any phase under exchange of two particles )

In particular, the statistics can be
       non-Abelian, i.e.,
the exchange of two particles 
must be described by a matrix

Non-Abelian anyons are a necessary ingredient
 for topological quantum computation

9

a    b    c a    b    c

Nayak, Simon, Stern, Freedman, and Das Sarma, RMP 2008

braiding

c    a    b b   c    a

a    b    c a   b   c
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On the contrary, due to Pauli principle fermions have to occupy 
distinguishable momentum states.

Why fermions?

Bosons are not so good,
as they condense in the lowest available energy state.

EF
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On the contrary, due to Pauli principle fermions have to occupy 
distinguishable momentum states.

Why fermions?

Bosons are not so good,
as they condense in the lowest available energy state.

EF

By changing the number of particles, we are able to investigate the 
interesting excitations, and the system becomes sensitive to the global 
(topological) properties of the band structure.



↑ 2D p-wave SF
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A stable p-wave SF?
3-body losses at a p-wave Feshbach resonance
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A stable p-wave SF?

Ultracold proposals:

• “dissipation-induced stability” in optical lattices (1,2)

(i.e., how to get no losses from large losses)

• time-dependent lattices (3,4,5)

• RF dressing of 2D fermionic polar molecules leads to
 long-range interactions (∝r-3) and high TC (6)

• super-exchange interactions in Bose-Fermi mixtures (7,8)

3-body losses at a p-wave Feshbach resonance

1:Han, Chan, Yi, Daley, Diehl, Zoller & Duan, PRL 2009
2:Roncaglia, Rizzi & Cirac, PRL 2009
3:Lim, Lazarides, Hemmerich & Morais-Smith, EPL 2009
4:Pekker, Sensarma & Demler, arXiv:0906.0931
5:Dutta & Lewenstein, arXiv:0906.2115 & PRA 2010
6:Cooper & Shlyapnikov, PRL 2009
7:Lewenstein, Santos, Baranov & Fehrmann, PRL 2004
8:Massignan, Sanpera & Lewenstein, PRA 2010
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Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)

Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

14



Bose-Fermi mixture
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2) Strong coupling:
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Lewenstein, Santos, Baranov & Fehrmann, PRL 2004
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UBF∼0



Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)
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UBF>0
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UBF<0

Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)

Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

composite 
fermions

UBF>0

14

UBF∼0



UBF<0

Bose-Fermi mixture

1) UBB>0
2) Strong coupling:

tB , tF ≪ UBB , |UBF|
(bosons in n=1 Mott state)

Lewenstein, Santos, Baranov & Fehrmann, PRL 2004

composite 
fermions

UBF>0

14

Attractive interaction when UBF>UBB

UBF∼0



Effective Fermi-Hubbard model

H = −t

�

<i,j>

c
†
i cj −

U

2

�

<i,j>

ninj − µ

�

i

ni

U>0

nearest-neighbor interaction
(super-exchange)

t∼(tBtF)/UBF
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Effective Fermi-Hubbard model

H = −t

�

<i,j>

c
†
i cj −

U

2

�

<i,j>

ninj − µ

�

i

ni

U>0

γn =
�

i

un(i)ci + vn(i)c
†
i

∆ij = U�cicj� = U
�

En>0

u∗
n(i)vn(j) tanh

�
En

2kBT

�

• BCS approach: introduce BdG operators

•  Self-consistent “p-wave gap equation”

nearest-neighbor interaction
(super-exchange)

t∼(tBtF)/UBF
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Spectrum on a lattice
(homogeneous system)

2D chiral (px±ipy) SF: E(k) =
�

ξ(k)2 +∆h(k)2

Linear dispersion at the Dirac cones

μ=-4t μ=0 μ=4t

Two distinguishable topological phases for filling F<1/2 and F>1/2

16

with ξ = −2t[cos(kxa) + cos(kya)]− µ and ∆2
h = ∆0[sin

2(kxa) + sin2(kya)]



Spectrum with vortex

10-8

10-6

10-4

10-2

1
Energy E0 of the quasi-Majorana mode

 0  0.1  0.2  0.3  0.4  0.5
Fermionic filling F
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 Strong
 pairing µ=-4t   Weak

 pairing

Δ0∼t∼10nK (super-exch.)
Low-lying spectrum: En≈nω0

The eigenstate with E0≪Δ0 is a Majorana fermion.
(n=0,1,2,...)

Particle-hole symmetry of the BdG eqs.:                                    .  Then, if {En,ψn} ↔ {−En,σ1ψ
∗
n} E0 = 0, u0 = v∗0

P.M., A. Sanpera & M. Lewenstein, PRA 2010
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χij = {1, i,−1,−i} : chirality
w = ±1 : vortex direction of rotation
fi : vortex amplitude at site i
θi : polar angle of site i

Ansatz : ∆ij = χijfie
iwθi



E=0 wavefunction

w=-1
U=5t

Oscillating wavefunction with exponentially decaying envelope

u0 has a maximum in the core for w=-1, a node for w=1

|u0|

18



↑↓ 2D s-wave SF
with n↑≠n↓

and spin-orbit coupling

19



Synthetic gauge fields
for neutral atoms

Theory:  Jaksch&Zoller, NJP 2003
             Osterloh et al., PRL 2005

                 Gerbier&Dalibard, NJP 2010
                 Bermudez et al., PRL 2010 (TRI Top. Ins.)

 adiabatic Raman passage
 adiabatic control of superpositions

    of degenerate dark states
 spatially varying Raman coupling
 Raman-induced transitions

    to auxiliary states in optical lattices 

Artificial gauge potentials for neutral atoms
J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, RMP 2011REVIEW:

20



a field moving fast..

21

NIST: Synthetic magnetic fields for ultracold neutral atoms, Nature (2009)
         A synthetic electric force acting on neutral atoms, Nature Phys. (2011)
         Spin-orbit-coupled Bose-Einstein condensates, Nature (2011)
         Observation of a superfluid Hall effect, PNAS (2012)
         Peierls Substitution in an Engineered Lattice Potential, PRL (2012)
         (theory) Chern numbers hiding in time-of-flight images, PRA (2011)

ICFO & Hamburg & Dresden:
        Tunable Gauge Potential for Neutral Spinless Particles
 in Driven Optical Lattices, PRL (2012)
   (method independent of the internal structure of the atoms!!)

Munich: Experimental realization of strong
 effective magnetic fields in an optical lattice, PRL (2011)

... ... ... ...
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Shanxi Univ. & MIT

PRL this week
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spin flip ↔ momentum kick,
 i.e., spin-orbit coupling

Synthetic gauge fields
for neutral atoms

|↑,q=kx-Q/2>

|↓,q=kx+Q/2> spin-orbit gap

increasing intensity of Raman lasers



H0 = −t
�

i

�
c†i+x̂e

iσyαci + c†i+ŷe
iσxβci + h.c.

�

c†i = (c†i↑, c
†
i↓)

External non-Abelian gauge fields yield a fictitious spin-orbit coupling

↑↓ fermions in
 synthetic gauge fields

24

a fictitious magnetic field yields
Peierl’s phases = complex hoppings



Add attractive interactions

BCS superfluid

↓

strong imbalance ⇒ topological states

↓

25

Time-reversal and spin-rotation invariances are destroyed by the Zeeman and SO terms
as a consequence our BCS Hamiltonian belongs to the most general symmetry class “D”

 (Altland&Zirnbauer, PRB 1997)
its topological phases are indexed in terms of an integer number



Spectrum on a cylinder
(open b.c. along x)
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Gap closing: hk0 =
�
�2k0

+∆2

edge
states



Topological phases

Δ=t
α=π/4
μ=-0.5t[|cos(α)|+|cos(β)|]

/t

Chern numbers
easy to calculate!
 (see J. Bellissard, condmat/9504030)

A. Kubasiak, P.M. & M. Lewenstein, EPL 2010

h=μ↑-μ↓

β

h/t
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Heff(k, h) = E(k, h) + �σ · �f(k, h)

∆CN(h̃) = sign{det[J�f (k0, h̃)]}.

Gap closing at         :(k0, h̃)



Spin imbalance vs. pair breaking
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0

Ch=1

α=β=π/4      μ=-3t

A. Kubasiak, P.M. & M. Lewenstein, EPL 2010

Ch=0
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Conclusions

• Ultracold SF fermions possess
                             non-trivial topological phases

• Optical lattices stabilize p-wave SF  ➢  FQH
                    

• ↑↓ fermions in non-Abelian gauge fields

• Applications to:
➡ relativistic QED 
➡ lattice gauge theories
➡ topological quantum computation
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