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The dimensionality of a system fundamentally affects the 
behaviour of interacting quantum particles. Classic 
examples range from the fractional quantum Hall effect 
to high temperature superconductivity. In general, one 
expects confinement to favour the binding of particles. 
However, attractively interacting bosons defy this 
expectation: while three identical bosons in 3D can 
support an infinite tower of Efimov trimers, only two 
universal trimers exist in the 2D case. 
Here we reveal how these two limits are connected, by 
investigating the problem of three identical bosons 
confined by a harmonic potential along one direction. 
Our results suggest a way to use strong confinement to 
engineer more stable Efimov-like trimers, which have so 
far proved elusive.
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Bound states in 3D and 2D

Experimental consequences
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3D: 
• for a>0, one dimer with energy -1/ma2 
• ∞ trimers, whose energies may mapped onto another via 

the transformations                        and                    [1,2] 
!
!
2D:  
• only one dimer of energy Eb, for any scattering length 
• two trimers, of energies                    and                     [3] 
!
Scaling symmetry:
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Three identical bosons in quasi-2D
When             particles occupy the ground h.o. level, and 
are kinematically 2D. However, collisions are still 3D, 
and allow to populate virtually all h.o. excited states. 
  
STM equation for strong confinement along z   [4,5]:
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Spectra (2D style)
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Confinement strength: Cz ⌘ |a�|/lz

Very strong confinement: (only two trimers)

Weaker confinement: (a third trimer appears)

Very strong confinement: (only two trimers)

Weaker confinement: (a third trimer appears)
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◆��1where: 
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!
• E3 is the energy measured from the 3-atom continuum 
•      is the relative momentum of atom i w.r.t. the pair (j,k) 
•                      are the h.o. quantum numbers for motion 

along z of a pair, and of an atom and a pair 
•     is a UV cut-off fixing       (the scattering length at 

which the ground trimer crosses the 3-atom continuum) 
•       is the wave function of the relative motion at zr=0
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Hyper-spherical expansion:

When                   , the potential shows a barrier at  
with height
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Wave function for the atom-pair relative motion:

E ⇠ !zTrimer energy              even outside its regime of existence 
in 3D → resistant to thermal dissociation when 

133Cs: !z ⇡ 2⇡ ⇥ 5kHz

133Cs: !z ⇡ 2⇡ ⇥ 30kHz
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Fig. 23. The a−1–K plane for the 3-body problem. The allowed regions for 3-atom scattering states and atom–dimer scattering states are labelled
AAA and AD, respectively. The heavy lines labeled T are three of the infinitely many branches of Efimov states. The cross-hatching indicates the
threshold for scattering states. The axes labelled 1/a and K are actually H 1/4 cos ! and H 1/4 sin !.

where f (x) is a periodic function with period 2". As another example, the binding energies of the Efimov trimers
scale as E

(n)
T → #−2m

0 E
(n)
T . The constraints of the discrete scaling symmetry are more intricate in this case, because it

maps each branch of the Efimov spectrum onto another branch. The dependence of the binding energies on a and $∗
must satisfy
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This implies that the binding energies for a > 0 have the form

E
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where the functions Fn(x) satisfy

Fn(x + 2m") = (e−2"/s0)mFn−m(x). (178)

The functions Fn(x) must also have smooth limits as x → ∞:

Fn(x) → (e−2"/s0)n−n∗ as x → ∞. (179)

In the 3-body problem, it is again convenient to introduce the energy variable K defined by Eq. (69). For a given value
of $∗, the possible low-energy 3-body states in the scaling limit can be identified with points in the (a−1, K) plane. It
is also convenient to introduce the polar coordinates H and ! defined by Eqs. (70). The discrete scaling transformation
in Eqs. (173) is simply a rescaling of the radial variable with $∗ and ! fixed: H → #−m

0 H .
The a−1–K plane for three identical bosons in the scaling limit is shown in Fig. 23. The possible states are 3-atom

scattering states, atom–dimer scattering states, and Efimov trimers. The regions in which there are 3-atom scattering
states and atom–dimer scattering states are labelled AAA and AD, respectively. The threshold for scattering states is
indicated by the hatched area. The Efimov trimers are represented by the heavy lines below the threshold, some of
which are labelled T. There are infinitely many branches of Efimov trimers, but only a few are shown. They intercept the
vertical axis at the points K =−(e−"/s0)n−n∗$∗. Although we have labelled the axes a−1 =H cos ! and K =H sin !, the
curves for the binding energies in Fig. 23 actually correspond to plotting H 1/4 sin ! versus H 1/4 cos !. This effectively
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• confinement breaks the discrete Efimov scaling 
symmetry, and destroys the weakest bound trimers 

•3D and 2D trimers have the same symmetry (s-wave), so 
they can hybridize under confinement 

• in the dimensional crossover, trimers tunnel through a 
short-range repulsive barrier 

• the two deepest quasi-2D trimers are stabilized for  
arbitrarily weak attraction and confinement strength 

• long-ranged quasi-2D trimers have small overlap with 
deep bound states: stable against three-body losses?

Key findings

• the deepest trimer is rather 3D-like for realistic trappings 
• no trimer resonances observable when ωz is larger than 

the repulsive barrier arising from 3D physics; as such, 
the loss peak of the ground trimer disappears for 

• due to universality of the Efimov spectrum, the loss peak 
of the first excited trimer disappears for

Cz & 0.4

Cz & 0.4/22.7

• similar avoided crossings should appear in the spectrum 
of quasi-1D trimers 

• since exactly two tetramers are predicted in 2D, we 
expect those to resist in the dimensional crossover, and 
actually be stabilized for arbitrarily weak z-confinements 

• strong confinement may be used to to engineer more 
stable, Efimov-like, hybrid trimers: the small weight of 
the trimer wave function at short distances, due to the 
presence of a repulsive barrier, should allow for the 
formation of a many-body state of long-lived trimers.

| |2Neglecting cross terms in      :

133Cs: !z ' 2⇡ ⇥ 9Hz

Hyper-radial Schrödinger equation:
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V(R) depends on lz/a but not on the 3-body parameter.
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Crossover trimers have very small weight at short 
distances, i.e., small overlap with deeply bound states.

R2 = r21 + r22 + r23

ground trimer
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confinement 
raises the 
continuum
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