Measuring Chern numbers in narrow Hofstadter strips

S. Mugel, A. Dauphin, P. Massignan, M. Lewenstein, C. Lobo, A. Celi

- Hofstadter model
- Synthetic dimensions and Hofstadter strips
- Laughlin pumping
- Measuring Chern numbers in narrow strips
- Robustness (disorder/trapping)

Hofstadter model

- A square lattice pierced by a uniform magnetic flux $\Phi=2 \pi \frac{p}{q}$

$$
\hat{\mathrm{H}}_{0}=-\sum_{m, n} J_{x} \hat{c}_{m+1, n}^{\dagger} \hat{c}_{m, n}+J_{y} e^{i m \Phi} \hat{c}_{m, n+1}^{\dagger} \hat{c}_{m, n}+\text { H.c. }
$$

- Spectrum: q bands of Bloch eigenstates $\left|u_{j}(\mathbf{k})\right\rangle$
- Brillouin zone: $(2 \pi /(q d)) \times(2 \pi / d)$
- Topology characterized by: $\mathcal{C}_{j}=\frac{1}{2 \pi} \int_{B Z} \mathcal{F}_{j}(\mathbf{k}) \mathrm{d}^{2} \mathbf{k}$
- Berry curvature: $\mathcal{F}_{j}(\mathbf{k})=2 \operatorname{Im}\left\langle\partial_{k_{y}} u_{j}(\mathbf{k}) \mid \partial_{k_{x}} u_{j}(\mathbf{k})\right\rangle$

Hofstadter strips

- Synthetic gauge fields in synthetic dimensions:

$$
\Phi=k_{R} \frac{a}{\pi}=\frac{2 \pi \cos \theta}{\lambda_{R}} \frac{a}{\pi}
$$

[Celi, Massignan, Lewenstein et al., PRL (2014)]

- Gauge change: $\hat{c}_{n, m} \rightarrow e^{i m n \Phi} \hat{c}_{n, m}$

$$
\hat{\mathrm{H}}_{0}\left(k_{x}\right)=-\sum_{n} 2 J_{x} \cos \left(k_{x} d-n \Phi\right) \hat{c}_{k_{x}, n}^{\dagger} \hat{c}_{k_{x}, n}+\left(J_{y} \hat{c}_{k_{x}, n+1}^{\dagger} \hat{c}_{k_{x}, n}+\text { H.c. }\right)
$$

- Spectrum:

grey: periodic b.c. along y colored: open b.c.

Laughlin pumping

- Add a constant force along x: $\hat{\mathrm{H}}=\hat{\mathrm{H}}_{0}+\hat{F}_{x}=\hat{\mathrm{H}}_{0}+F_{x} \sum_{m} m \hat{c}_{m, n}^{\dagger} \hat{c}_{m, n}$
- Take its effect into account through the gauge transf. $\hat{U}=\exp \left(i \hat{F}_{x} t / \hbar\right)$
- Within the single-band and adiabatic approximations, the momenta of Bloch states evolve as $\mathbf{k}(t)=\mathbf{k}_{0}+\frac{t}{\hbar d} F_{x} \mathbf{e}_{x}$
- Linear response: $\mathbf{v}_{j}(\mathbf{k})=\frac{1}{\hbar} \partial_{\mathbf{k}} E_{j}(\mathbf{k})+\frac{F_{x}}{\hbar d} \mathcal{F}_{j}(\mathbf{k}) \mathbf{e}_{y}$
- For a filled band: $\langle\mathbf{v}(t)\rangle=\frac{2 \pi F_{x}}{\hbar d} \mathcal{C}_{j} \mathbf{e}_{y}$
[Thouless, Kohmoto, Nightingale, and den Nijs, PRL (1982)]

Single particles?

- Mean velocity: $\langle\mathbf{v}(t)\rangle=\sum_{j} \int_{B Z} \mathbf{v}_{j}(\mathbf{k}) \rho_{j}(\mathbf{k}, t) \mathrm{d}^{2} \mathbf{k}$
where $\rho_{j}(\mathbf{k}, t)=\left|\left\langle u_{j}(\mathbf{k}) \mid \psi(\mathbf{k}, t)\right\rangle\right|^{2}$ is the overlap with the Bloch states
- Prepare a wavepacket extended along x , but concentrated along y ; its Fourier transform is uniform along $\mathbf{y}: \rho_{j}(\mathbf{k}, t) \approx \rho_{j}\left(k_{x}, t\right)$
- Support on a single band: drop the sum
- A complete Bloch oscillation is performed over a period $T=\frac{2 \pi \hbar}{q\left|F_{x}\right|}$
- Net displacement: $\langle\mathbf{r}(T)-\mathbf{r}(0)\rangle=\int_{0}^{T}\left\langle\mathbf{v}_{j}(t)\right\rangle \mathrm{d} t=\operatorname{sgn}\left(F_{x}\right) \mathcal{C}_{j} d \mathbf{e}_{y}$

Proposal

- a) prepare a wavepacket centered at $\mathrm{y}=0$
- b) ramp up adiabatically the Raman coupling ("Jy")
- c) turn on the force, and measure the transverse displacement at $\mathrm{t}=\mathrm{T}$

Pumping dynamics

- Three-legged ladder $\left(\mathrm{N}_{\mathrm{y}}=3\right)$
- Small Raman coupling: $J_{y}=0.2 J_{x}$
- Force: $F_{x}=0.02 \Delta E_{1} / \mathrm{d}$

Stronger Raman coupling

- Transverse displacement: $\langle\Delta y\rangle=\left\langle\Psi_{T}\right| \hat{n}\left|\Psi_{T}\right\rangle-\left\langle\Psi_{0}\right| \hat{n}\left|\Psi_{0}\right\rangle$
- Perturbation theory: $\left|\varphi_{1}\right\rangle \propto\left(|n=1\rangle+\frac{J_{y} / 2 J_{x}}{\cos \left(k_{x} d-\Phi\right)-\cos \left(k_{x} d\right)}|n=0\rangle\right)+\mathcal{O}\left(\lambda^{2}\right)$
- Displacement: $\langle\Delta y\rangle=\left.\left\langle\varphi_{1}\right| \hat{n}\left|\varphi_{1}\right\rangle\right|_{k_{x}=\frac{2 \pi}{3}}=1-\left(\frac{J_{y}}{3 J_{x}}\right)^{2}+\mathcal{O}\left(\frac{J_{y}}{J_{x}}\right)^{3}$

Higher Chern numbers

- The ground band with $\Phi=\frac{4 \pi}{5}$ has $\mathcal{C}_{1}=-2$

grey: periodic b.c. along y
colored: open b.c.
our method works even when
the FHS algorithm fails!

Robustness

- Static onsite disorder:

Conclusions

- Transverse conductance remains "almost quantized" even in very narrow strips (which have tiny bulk regions)
- Powerful method to read out the Chern number, which:
- works for all bands in the limit $J_{y}<J_{x}$
- may be applied whenever $\mathrm{N}_{\mathrm{y}}<2 \mathrm{q}$
- is resistent to disorder
- may be applied in harmonic traps

