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Hofstadter model

Synthetic dimensions and Hofstadter strips
Laughlin pumping

Measuring Chern numbers in narrow strips

Robustness (disorder/trapping)



Hofstadter model

* A square lattice pierced by a uniform magnetic flux & = 27
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e Spectrum: g bands of Bloch eigenstates |u;(k))

* Brillouin zone: (27/(qd)) x (27/d)

* Topology characterized by: C; = % F;i(k)d*k
BZ

* Berry curvature: F;(k) = 2Im(0y,u;(k)|0k, u;(k))



Hofstadter strips

1D atomic gas

* Synthetic gauge fields in synthetic dimensions:
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. aughlin pumping
» Add a constant force along x: H=Hg+ F, =Ho+ F, Y mél, ,.émn

 Take its effect into account through the gauge transf. U = exp(iF,t/h)

* Within the single-band and adiabatic approximations,
the momenta of Bloch states evolve as k(t) = kg + inex
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* Linear response: v;(k) = z0kE;(k) + - F;(k)e,
group vel. anomalous vel.
, 2 F,
* For afilled band: (v(t)) = Wcjey

[Thouless, Kohmoto, Nightingale, and den Nijs, PRL (1982)]



Single particles”
Mean velocity: (v(t)) = Z/BZ v;(k)p;(k,t)d’k
where p;(k,t) = [(u;(k)|(k,1))|* is the overlap with the Bloch states

Prepare a wavepacket extended along x, but concentrated along vy;
its Fourier transform is uniform along y: p;(k,t) = p;(ks, 1)

Support on a single band: drop the sum
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A complete Bloch oscillation is performed over a period T =

Net displacement: (r(T') —r(0)) = /OT (v;(t))dt = sgn(F,)C;d e,

during a Bloch period, the particle is “pumped” over a number of sites equal to the Chern number!
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Proposal

e a) prepare a wavepacket centered at y=0

* b) ramp up adiabatically the Raman coupling (“Jy")

* C)turn on the force, and measure the transverse displacement at t=T
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Pumping dynamics

* Three-legged ladder (Ny = 3)

* Small Raman coupling: Jy = 0.2Jx

e Force: Fx=0.02 AE4/d
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Stronger Raman coupling
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» Displacement: (Ay) = (p1|7]p1)




Higher Chern numbers

* The ground band with ® = %ﬂ has C, = -2

(y)/d

our method works
even when
the FHS algorithm fails!
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Robustness

e Static onsite disorder:

* Harmonic trapping:
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Conclusions

Transverse conductance remains “almost quantized” even in very
narrow strips (which have tiny bulk regions)

Powerful method to read out the Chern number, which:
- works for all bands in the limit Jy « Jx

- may be applied whenever Ny < 2q

- IS resistent to disorder

- may be applied in harmonic traps
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