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• Hofstadter model 

• Synthetic dimensions and Hofstadter strips 

• Laughlin pumping 

• Measuring Chern numbers in narrow strips 

• Robustness (disorder/trapping)
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Hofstadter model
• A square lattice pierced by a uniform magnetic flux 

• Spectrum: q bands of Bloch eigenstates 

• Brillouin zone: 

• Topology characterized by: 

• Berry curvature:               
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Hofstadter strips
• Synthetic gauge fields in synthetic dimensions:  
 

• Gauge change:                           

• Spectrum:

(a) Layout (b) Level diagram
1D atomic gas

Raman Raman

Lattice Lattice

(c) Concept

[Celi, Massignan, Lewenstein et al., PRL (2014)]
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Laughlin pumping
• Add a constant force along x: 

• Take its effect into account through the gauge transf. 

• Within the single-band and adiabatic approximations,  
the momenta of Bloch states evolve as  

• Linear response: 

• For a filled band: 

Ĥ = Ĥ0 + F̂
x
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[Thouless, Kohmoto, Nightingale, and den Nijs, PRL (1982)]
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Single particles?
• Mean velocity: 
 
where                                       is the overlap with the Bloch states 

• Prepare a wavepacket extended along x, but concentrated along y;  
its Fourier transform is uniform along y: 

• Support on a single band: drop the sum 

• A complete Bloch oscillation is performed over a period 

• Net displacement:

hv(t)i =
X

j

Z

BZ
vj(k)⇢j(k, t)d

2k

⇢j(k, t) = |huj(k)| (k, t)i|2

⇢
j

(k, t) ⇡ ⇢
j

(k
x

, t)

T =
2⇡~
q|F

x

|

hr(T )� r(0)i =
Z

T

0
hv

j

(t)i dt = sgn(F
x

)C
j

d e
y

during a Bloch period, the particle is “pumped” over a number of sites equal to the Chern number!
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Proposal

• a) prepare a wavepacket centered at y=0 

• b) ramp up adiabatically the Raman coupling (“Jy”) 

• c) turn on the force, and measure the transverse displacement at t=T
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Pumping dynamics
• Three-legged ladder (Ny = 3) 

• Small Raman coupling: Jy = 0.2Jx 

• Force: Fx = 0.02 ΔE1/d
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Stronger Raman coupling

• Transverse displacement: 

• Perturbation theory:  

• Displacement:
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Higher Chern numbers
• The ground band with             has  � =
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our method works 
 even when  

 the FHS algorithm fails!

Ny=5



Robustness
• Static onsite disorder: 
 
 
 
 
 
 

• Harmonic trapping: 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Conclusions
• Transverse conductance remains “almost quantized” even in very 

narrow strips (which have tiny bulk regions) 

• Powerful method to read out the Chern number, which:  
- works for all bands in the limit Jy ≪ Jx 
- may be applied whenever Ny < 2q 
- is resistent to disorder  
- may be applied in harmonic traps  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