QUANTUM BROWNIAN MOTION IN ULTRACOLD GASES

Pietro Massignan ICFO - Institute of Photonic Sciences (Barcelona)

of Photonic Sciences

OUTLINE

- Brownian Motion
- Quantum Brownian Motion
- Born-Markov Master Equation
- Inhomogeneous environments
- Lindblad extension
- Impurities in a Bose gas

A DAMPED CLASSICAL SYSTEM

- Simplest open system: a heavy particle in a heat reservoir at temp. T, providing both friction γ and noise ξ
- Noise statistics: $\langle \xi(t) \rangle = 0$ and $\langle \xi(t) \xi(t') \rangle = \chi(t t')$
- No memory (white noise): $\chi(t) \propto \delta(t)$
- "Ohmic" dissipation: time-local friction proportional to the velocity: $m\ddot{x}(t) + m\gamma\dot{x}(t) + V'(x) = \xi(t)$
- To enforce equipartition theorem, $\chi(t) = 2mk_BT\gamma\delta(t)$

MEMORY EFFECTS

 Even if interactions are time-local in the full description, memory effects generally arise when degrees of freedom are traced out from the dynamics.

Non-Markovian dynamics:

$$m\ddot{x}(t) + m \int_{-\infty}^{t} \mathrm{d}t' \ \gamma(t - t')\dot{x}(t') + V'(x) = \xi(t)$$

QUANTUM BROWNIAN MOTION

- A particle interacting with a large bath
- Microscopic origin of damping and diffusion?
- Dynamics?
- Properties of the stationary solution?
- Decoherence?
- Inhomogeneous environments?

IMPURITIES IN A BOSE GAS

Observables: breathing frequency, damping, effective mass, ...

[Catani et al., PRA (2012)]

IMPURITIES IN A BOSE GAS

Many impurities in a 3D cloud:

[Jørgensen et al, arXiv (2016); Hu et al., arXiv (2016)]

2

4

QUANTUM BROWNIAN MOTION

• A particle (S) interacting with a large bath (B): $H = H_S + H_B + H_I$

$$H_S = \frac{p^2}{2m} + V(x)$$

$$H_B = \sum_k \left(\frac{p_k^2}{2m_k} + \frac{m_k \omega_k^2 x_k^2}{2}\right) - E_0 = \sum_k \hbar \omega_k g_k^{\dagger} g_k$$

$$x_k = \sqrt{\frac{\hbar \omega_k}{2}} \left(g_k + g_k^{\dagger}\right)$$

$$H_I = -xB = -x\sum_k \kappa_k x_k$$

(homogeneous damping and diffusion)

• Spectral density:
$$J(\omega) = \sum_{k} \frac{\kappa_k^2}{2m_k\omega_k} \delta(\omega - \omega_k)$$

[Caldeira and Leggett, Phys. A (1983)]

MASTER EQUATION

• Von Neumann eq. in the interaction picture: $\dot{\rho}(t) = -\frac{\imath}{\hbar}[H_{\rm I}(t), \rho(t)]$

Formal solution:
$$\rho(t) = \rho(0) - \frac{i}{\hbar} \int_0^t ds \left[H_I(s), \rho(s) \right]$$

Truncate to 2nd order, and trace over the bath:

$$\dot{\rho}_S(t) = -\frac{1}{\hbar^2} \int_0^t \mathrm{d}s \, \mathrm{Tr}_B\left(\left[H_I(t), \left[H_I(s), \rho(s)\right]\right)\right)$$

Still too complicated (the r.h.s. contains the full density matrix!)

APPROXIMATIONS

- System and bath initially uncorrelated: $\rho(0) \approx \rho_S(0) \otimes \rho_B(0)$
- Weak coupling and large environment (Born): $\rho(t) \approx \rho_S(t) \otimes \rho_B(0)$
- "Short memory" of the environment (Markov): $au_{corr} \ll au_S$
- Born-Markov Master Equation:

$$\dot{\rho}_S(t) = -\frac{1}{\hbar^2} \int_{-\infty}^t \mathrm{d}s \, \mathrm{Tr}_B\left([H_I(t), [H_I(s), \rho_B(0) \otimes \rho_S(t)]\right)$$

BORN-MARKOV MASTER EQUATION

Back to Schrödinger picture:

 $\mathcal{C}($

$$\dot{\rho}_S(t) = -\frac{i}{\hbar} [H_S, \rho_S] - \frac{1}{\hbar^2} \int_0^\infty \mathrm{d}\tau \operatorname{Tr}_B[H_I(0), [H_I(-\tau), \rho_S(t) \otimes \rho_B(0)]]$$

Autocorrelations of a thermal environment:

$$\langle g_k^{\dagger} g_k \rangle = \frac{1}{\exp(\omega_k/k_B T) - 1}$$

$$\begin{split} (\tau) &= \langle B(\tau)B(0) \rangle = \sum_{k,k'} \kappa_k \kappa_{k'} \langle x_k(\tau)x_{k'}(0) \rangle \delta_{k,k'} \\ &= \int_0^\infty d\omega \ J(\omega) \left[\coth\left(\frac{\omega}{2k_B T}\right) \cos(\omega\tau) - i\sin(\omega\tau) \right] \\ &= \nu(\tau) + i\eta(\tau) \\ &\text{noise dissipation} \end{split}$$

BORN-MARKOV MASTER EQUATION

 $(\rho_s \rightarrow \rho \text{ in the following})$

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_S, \rho(t)] - \frac{1}{\hbar^2} \int_0^\infty \mathrm{d}\tau \left(\nu(\tau) [x(0), [x(-\tau), \rho(t)]] - i\eta(\tau) [x(0), \{x(-\tau), \rho(t)\}] \right)$$

• Harmonically trapped central particle: $V(x) = \frac{1}{2}m\Omega^2 x^2$

•
$$x(\tau) = x\cos(\Omega\tau) + (p/m\Omega)\sin(\Omega\tau)$$

$$\dot{\rho}(t) = -\frac{i}{\hbar} \left[H_S + C_x x^2, \rho(t) \right] - \frac{iC_p}{\hbar m \Omega} [x, \{p, \rho(t)\}] - \frac{D_x}{\hbar} [x, [x, \rho(t)]] - \frac{D_p}{\hbar m \Omega} [x, [p, \rho(t)]]$$

$$C_x = -\int_0^\infty d\tau \, \eta(\tau) \cos(\Omega \tau) \qquad D_x = \int_0^\infty d\tau \, \nu(\tau) \cos(\Omega \tau)$$

$$C_p = \int_0^\infty d\tau \, \eta(\tau) \sin(\Omega \tau) \qquad D_p = -\int_0^\infty d\tau \, \nu(\tau) \sin(\Omega \tau)$$

• Decoherence rate: $-\frac{D_x}{\hbar}[x, [x, \rho(t)]] \longrightarrow -\gamma \left(\frac{X - X'}{\lambda_{dB}}\right)^2 \rho(X, X', t)$

WIGNER REPRESENTATION

Wigner function (quasi-probability):

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{\infty} \mathrm{d}y \, \langle x+y|\rho|x-y\rangle e^{-2ipy/\hbar}$$

Probabilities:

$$\int_{-\infty}^{\infty} \mathrm{d}p \ W(x,p) = \langle x|\rho|x\rangle$$
$$\int_{-\infty}^{\infty} \mathrm{d}x \ W(x,p) = \langle p|\rho|p\rangle$$

$$\dot{W} = \left[m\Omega^2 \partial_p x - \frac{\partial_x p}{m} + \frac{2C_p}{m\Omega} \partial_p p + \hbar D_x \partial_p^2 - \frac{\hbar D_p}{m\Omega} \partial_x \partial_p \right] W$$

• Ansatz for the stationary solution: $W \propto \exp\left[-\left(c_p \frac{p^2}{2m} + c_x \frac{m\Omega^2 x^2}{2}\right)/(k_B \tilde{T})\right]$

STATIONARY STATE

[Massignan et al., PRA (2015)]

INHOMOGENEOUS ENVIRONMENTS

How to treat inhomogeneous damping and diffusion?

$$H_I = -xB = -x\sum_k \kappa_k x_k \quad \longrightarrow \quad H_I = -f(x)B$$

• Quadratic coupling: $f(x) = x^2/a$

large Lamb shift of the trapping frequency \rightarrow instabilities

Aspect ratio: $\log(\delta_x^2/\delta_p^2)$

 $\Gamma = \frac{2\hbar\gamma}{m\Omega^2 a^2}$

HEISENBERGVIOLATIONS?

- The Born-Markov Master Equation for QBM $\dot{\rho}_S(t) = \mathcal{L}\rho_S(t)$ yields violations of the Heisenberg uncertainty relation at low T!
- I exact solution, showing that: $\dot{\rho}_S(t) = \mathcal{L}(t)\rho_S(t)$ [strictly speaking, QBM is <u>not</u> a Markov process]
- Mathematical reason:

the QBM BMME does not preserve the positivity of ρ

HEISENBERG UNCERTAINTY FOR PURE AND MIXED STATES

• Pure states: $\sigma_A^2 = \left\langle \psi \left| (A - \langle A \rangle)^2 \right| \psi \right\rangle$ \longrightarrow $\sigma_X^2 \sigma_P^2 \ge \frac{1}{4} \left\langle \frac{[X, P]}{i} \right\rangle^2 = \frac{\hbar^2}{4}$

$$|a\rangle \equiv \left| (A - \langle A \rangle)\psi \right\rangle \quad \longrightarrow \quad \langle a|a\rangle\langle b|b\rangle \geq |\langle a|b\rangle|^2 = \left(\frac{\langle a|b\rangle + \langle b|a\rangle}{2}\right)^2 + \left(\frac{\langle a|b\rangle - \langle b|a\rangle}{2i}\right)^2 \geq \left(\frac{\langle a|b\rangle - \langle b|a\rangle}{2i}\right)^2 = \left\langle \frac{[A,B]}{2i}\right\rangle^2$$

• Density matrices: $\sigma_A^2 = \text{Tr}\left[\rho\left(A - \langle A \rangle\right)^2\right] \longrightarrow \sigma_X^2 \sigma_P^2 \ge \frac{1}{4} \left\langle \frac{[X,P]}{i} \right\rangle^2 = \frac{\hbar^2}{4}$

but the proof requires
$$ho = \sum_j p_j \ket{\phi_j} raket{\phi_j}$$
 with $p_j > 0$

LINDBLAD EQUATION

 $\langle \psi | \rho(t) | \psi \rangle > 0 \text{ ensured by: } \dot{\rho}(t) = -\frac{i}{\hbar} [H, \rho(t)] + \sum_{i,j} \kappa_{ij} \left[A_i \rho(t) A_j^{\dagger} - \frac{1}{2} \{ A_i^{\dagger} A_j, \rho(t) \} \right]$ [time-local & Markovian]

 (κ_{ij}) : positive definite matrix

• Minimal choice: single Lindblad generator: $A = \alpha x + \beta p$ $\dot{\rho}(t) = -\frac{i}{\hbar} \left[H_S + C_x x^2, \rho(t) \right] - \frac{iC_p}{\hbar m \Omega} [x, \{p, \rho(t)\}] - \frac{D_x}{\hbar} [x, [x, \rho(t)]] - \frac{D_p}{\hbar m \Omega} [x, [p, \rho(t)]] - \frac{\tilde{D}_p}{\hbar m \Omega} [p, [p, \rho(t)]]$

• Ansatz: correlated Gaussian
$$W \propto \exp\left[\frac{1}{2(\rho^2 - 1)}\left(\frac{x^2}{\sigma_x^2} + \frac{p^2}{\sigma_p^2} + \frac{2\rho x p}{\sigma_x \sigma_p}\right)\right]$$

STATIONARY STATE OF THE LINDBLAD-BMME FOR QBM

[Lampo, Massignan et al., arXiv (2016)]

19

IMPURITIES IN A BOSE GAS

$$\hat{H}_B = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}} + \frac{1}{2V} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} V_B(\mathbf{q}) \hat{a}_{\mathbf{k}'-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}'} \hat{a}_{\mathbf{k}}$$
$$\hat{H}_{IB} = \frac{1}{V} \sum_{\mathbf{k},\mathbf{q}} V_{IB}(\mathbf{k}) \hat{\rho}_I(\mathbf{q}) \hat{a}_{\mathbf{k}-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{k}}$$

Bogolubov transformation:
$$\hat{H}_{IB} = \sum_{\mathbf{k}\neq\mathbf{0}} V_{\mathbf{k}} e^{i\mathbf{k}\cdot\hat{\mathbf{r}}} \left(\hat{b}_{\mathbf{k}} + \hat{b}_{-\mathbf{k}}^{\dagger}\right)$$

 $V_{\mathbf{k}} = g_{IB} \sqrt{\frac{n_0}{V}} \left[\frac{(\xi k)^2}{(\xi k)^2 + 2}\right]^{\frac{1}{4}}$

Lee-Low-Pines transformation:

$$\hat{H} = \frac{\left(\hat{\mathbf{p}} - \sum_{\mathbf{k}} \mathbf{k} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}\right)^{2}}{2m_{I}} + \frac{m_{I} \Omega^{2} \hat{\mathbf{r}}^{2}}{2} + \sum_{\mathbf{k} \neq \mathbf{0}} E_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} + \sum_{\mathbf{k} \neq \mathbf{0}} V_{\mathbf{k}} \left(\hat{b}_{\mathbf{k}} + \hat{b}_{-\mathbf{k}}^{\dagger}\right)$$

[Shashi et al., PRA (2014)]

IN COLLABORATION WITH:

Aniello Lampo

Maciej Lewenstein

(ICFO-Barcelona)

Soon Hoe Lim

Janek Wehr

(U. Tucson)